CARTA DESCRIPTIVA (FORMATO MODELO EDUCATIVO UACJ VISIÓN 2020)

I. Identificadores de la asignatura

Instituto: ICB Modalidad: Presencial

Departamento: Ciencias Químico Biológicas

Créditos: 6
Sistemática, Taxonomía y Evolución

Electiva Área

Materia: Molecular

Maestría en Ciencias Orientación en

Programa: Genómica Carácter: Terminal

Clave: MOG-0012-14

Tipo: Curso

Nivel: Principiante

Horas: 48 Totales Teoría: 48 Práctica:

II. Ubicación

Antecedentes: Clave

Fundamentos de Genómica MOG-0017-17

Bioinformática MOG-0001-17

Consecuente:

Seminario de Tesis I MOG-0015-14 Análisis estadístico MOG-0023-17

III. Antecedentes

Conocimientos: Conocimientos generales de taxonomía, sistematica, genética y biología molecular.

Habilidades: Manejo de bases de datos, busqueda de material bibliográfico. Conocimientos de bioinformática. Capacidad de comunicación oral y escrita.

Actitudes y valores: Iniciativa, constancia, respeto.

IV. Propósitos Generales

Los propósitos fundamentales del curso son:

 Que los estudiantes conozcan las diferentes escuelas de la sistemática y su relación con la evolución molecular. Que los estudiantes sean capaces de analisar datos genéticos y elaborar hipótesis evolutivas a partir de ellos.

V. Compromisos formativos

Intelectual: (El estudiante conocerá los mecanismos que originan cambios a nivel genético y como se modifican en el tiempo..

Humano: El estudiante tendrá un manejo pleno de la bibliografía especializada y de los programas informáticos utilizados en sistemática molecular.

Social: El estudiante será capaz de aplicar los conocimientos adquiridos en problemas relacionados con conservación de especies y de hábitat.

Profesional: El estudiante podrá utilizar las herramientas adquiridas en su desarrollo profesional, ya sea a nivel investigación, docencia, manejo y conservación.

VI. Condiciones de operación

Espacio: Aula tradicional

Laboratorio: Mobiliario: Mesas bancos, pizarrón.

Población: 5 - 10 alumnos

Material de uso frecuente:

A) Cañón y computadora

Condiciones especiales:

VII. Contenidos y tiempos estimados

Temas	Contenidos	Actividades
1.Introducción	 Encuadre de la materia Antecedentes históricos de sistemática y evolución Conceptos básicos: taxonomía, sistemática, evolución, especie, gen (2 sesiones) 	Presentación del curso y comentarios sobre la evaluación. Presentación por el docente y discusión grupal sobre eventos históricos relevantes Lecturas de libros de texto y discusión grupal. Síntesis de los conocimientos adquiridos de la primera unidad.
2. Genes, Genoma, Código Genético	Conceptos de genEstructura del genomaCódigo genético y	Explicación del tema por el docente. Lecturas de libros de texto y discusión

	aminoácidos	grupal.
	Estructura del proteoma (2 sesiones)	γιαραι.
Genética de poblaciones	 Frecuencias alélicas Elibrio de Hardy-Welnberg Selección y adecuación Endogamía Deriva génica Flujo génico (4 sesiones) 	Explicación por parte del docente y discusión grupal de conceptos. Resolución de problemas por alumnos asesorados por el profesor
2. Mutación	 Concepto y tipos de mutaciones Mutación y selección Neutralidad Estimación de la mutación (3 sesiones) 	Presentación por el docente y discusión grupal Resolución de problemas y discusión Discusión de artículos científicos Examen 1 Unidades 1 a 4
Tasas de cambio y patrones de sustitución	 Modelos de sustitución nucleotídica Divergencia entre dos regiones genéticas Estimación de modelos evolutivos (2 sesiones) 	Presentación por el docente Discusión grupal Practica sobre cálculo de modelos evolutivos
4. Sistemática molecular	 Marcadores genéticos Dendogramas y cladogramas Árboles de genes, de especies y evidencia total Métodos de recostrucción filogenética Métodos de soporte de ramas (4 sesiones) 	Exposición de los temas por estudiantes organizados en equipos. Discusión grupal y síntesis del tema Practica sobre métodos de reconstrucción filogenética Examen 2. Unidades 5 y 6
5. Relojes moleculares	 Definición y limitaciones Prueba de Tasas relativas Puntos de calibración Métodos de obtención de relojes moleculares (2 sesiones) 	Presentación por el docente y discusión grupal Practica sobre calibración y cálculo de reloj molecular
6. Evolución concertada	 Intercambio reciproco de material genético Familias génicas Implicaciones evolutivas (2 sesiones) 	Exposición de artículos científicos por los alumnos.
7. Transposición y transferencia horizontal	 Transposición y retroposición Pseudogenes Mecanismos de transferencia horizontal (2 sesiones) 	Presentación por el docente y discusión grupal Repaso general del curso

Examen 3. Unidades 8 y 9

VIII. Metodología y estrategias didácticas

Metodología Institucional:

- Uso y manejo del software.
- Presentaciones: Maestro-Grupo, Alumno-Grupo
- Tareas prácticas

Estrategias del Modelo UACJ Visión 2020 recomendadas para el curso:

- a) aproximación empírica a la realidad
- b) búsqueda, organización y recuperación de información
- c) comunicación horizontal
- d) descubrimiento
- e) ejecución-ejercitación
- f) elección, decisión
- g) evaluación
- h) experimentación
- i) extrapolación y trasferencia
- j) internalización
- k) investigación
- meta cognitivas
- m) planeación, previsión y anticipación
- n) problematización
- o) proceso de pensamiento lógico y crítico
- p) procesos de pensamiento creativo divergente y lateral
- q) procesamiento, apropiación-construcción
- r) significación generalización
- s) trabajo colaborativo

IX. Criterios de evaluación y acreditación

a) Institucionales de acreditación:

Acreditación mínima de 80% de clases programadas

Entrega oportuna de trabajos

Pago de derechos

Calificación integrada final mínima de 7.0

Permite examen de título: no

b) Evaluación del curso

Acreditación de los módulos mediante los siguientes porcentajes:

Tareas 20%

Exámenes parciales 50%

Prácticas 20%

Participación y asistencia 10%

Total 100 %

X. Bibliografía

Hedrick, P. W. 2009. Genetics of Populations. 4a. Ed. Jones and Bartlett Publishers, Sudbury, Massachusetts U.S.A. 737 pp.

Hills, D., Moritz, C., y Mable, B. 1996. Molecular Systematics. 2a. Ed. Sinauer Associates, Inc. Publishers Sunderland, Massachussets U.S.A. 655 pp.

Wen-Hsiung, L. 1997. Molecular Evolution. Sinauer Associates, Inc. Publishers Sunderland, Massachussets U.S.A. 487 pp.

X. Perfil deseable del docente

Maestría, de preferencia Doctor en Ciencias con formación en Sistemática o Genética

XI. Institucionalización

Responsable del Departamento: Dr. Antonio de la Mora Covarrubias

Coordinador/a del Programa: Dra. Raquel González Fernández

Fecha de elaboración: Mayo 2005

Elaboró: Dr. Marcos Lizárraga y Dr. Francisco Vargas Albores

Fecha de rediseño: Febrero 2014

Rediseño: Dr. Alejandro Botello Camacho