CARTA DESCRIPTIVA (FORMATO MODELO EDUCATIVO UACJ VISIÓN 2020)

I. Identificadores de l	a asignatura		
Instituto:	Instituto de Ciencias Biomédicas	Modalidad:	Presencial
Departamento:	Ciencias Químico Biológicas	Créditos:	
Materia:	Química General	Creditos.	10
Programa:	Licenciatura en Quimica	Carácter:	Obligatorio
Clave:	BAS 110105		
		Tipo:	Teórico- Práctico
Nivel:	Principiante		
Horas:	96 Teoría: 64		Práctica: 32

II. Ubicación

Antecedentes: Bachillerato Clave: No Aplica

Consecuencias: Ninguno

III. Antecedentes

Conocimientos: Básico e intermedio relacionados con la carrera de química.

Habilidades: Capacidad en el manejo de equipo de laboratorio y preparación de soluciones, manejo de información.

Actitudes y valores: Trabajo en equipo, respetuoso, responsable y puntual.

IV. Propósitos Generales

Los propósitos fundamentales del curso son:

Despertar en el alumno interés y conocimientos para el adecuado aprovechamiento de las ciencias químicas.

V. Compromisos formativos

Conocimientos: Nomenclatura, conceptos básicos, estequiometria, enlaces, tabla periódica.

Habilidades: Capacidad de resolver problemas matemáticos e interpretar los resultados obtenidos. Capacidad de leer, comprender y cuestionar conceptos abstractos. Habilidad para consultar fuentes bibliográficas variadas (libros, revistas, internet) y redactar trabajos de investigación de calidad, citando bibliografía consultada.

Actitudes y valores: Responsabilidad, interés, honestidad. Problemas que puede solucionar. Que el alumno obtenga conocimientos básicos sobre la química básica, solucionado problemas estequiometricos.

VI. Condiciones de operación

Aula tradicional Espacio:

Laboratorio: Experimental Mobiliario: Mesa banco

Población: 20-25

Material de uso frecuente:

a)Pizarrón

b)PC

Condiciones especiales: No aplica

Temas	Contenidos	Actividades
Introducción y nociones preliminares.	1.1 Objeto y objetivos de estudio de la Química. — Materia. Concepto: sustancia y campo. — Métodos de estudio de la Química. — Propiedades de los materiales: físicas y químicas. — Clasificación de los materiales. 1.2 Fenómenos (cambios de los materiales). — Físicos, químicos y alotrópicos. — Implicaciones energéticas. Térmicas, eléctricas y luminosa. 1.3 Leyes de la combinación	— Investigación bibliográfica sobre los componentes de materiales de uso común en el hogar, en medicina, el tratamiento de aguas residuales, en la atmósfera, en la industria, etc. — Ficha de trabajo con la descripción de las propiedades de materiales de uso común, para que el alumno las clasifique como físicas, químicas o alotrópicas. — Ficha de trabajo para encontrar las relaciones de composición de compuestos químicos, proporcionando información respecto a las masas de sus elementos. — Ficha de trabajo donde, por analogía, se justifiquen los postulados atómicos de

química.

- Ley de la conservación de la masa y de la energía: correlación masa-energía.
- Ley de la composición definida. Relaciones de composición.
- Leyes volumétricas.
- Interpretación a nivel atómico.
- Postulados atómicos de Dalton. Descripción y fundamentos.
- Hipótesis de Avogadro. Concepto de mol.
- 1.4 Representación simbólica.
- Símbolos de los elementos.
- Fórmulas de los compuestos.
- Como consecuencia de las leyes ponderales.
- Conceptos de molécula y valencia, como consecuencia de las relaciones de composición.
- Ecuaciones químicas.
- Representación de un cambio químico.
- Identificación de reactantes y productos.

Dalton.

- Previa investigación bibliográfica de los antecedentes y acuerdos científicos que condujeron a la representación actual de los elementos y compuestos, el alumno comparará su procedimiento y criterios en el ejercicio anterior.
- Ejercicios para comprobar que la representación de los fenómenos químicos, mediante su ecuación, sí cumple con las leyes ponderales, proponiendo procedimiento de comprobación.
- —explicará las reglas para nombrar compuestos binarios y los alumnos realizarán ejercicios de su aplicación

1. Estructura del átomo

- 1.5Balance de ecuaciones químicas.
- Método de prueba y error.
- Método algebraico.
- 1.6. Clasificación de las reacciones por su mecanismo.
- Reacciones de adición.
- Características e igualación.
- Reacciones de sustitución simple y doble. Características e igualación.
- Reacciones de eliminación o descomposición. Características e igualación.
- 1.7 Factores que influyen en una reacción química.
- Factores físicos: energía, temperatura, presión, luz y electricidad.
- Factores químicos. Concentración de reactivos, catalizadores, acidez y alcalinidad

Ejercicios, donde a partir de los nombres y fórmulas de los reactantes y productos de fenómenos químicos, el alumno represente e iguale las ecuaciones correspondientes con el uso del método de prueba y error o el algebraico.

2.2 Ficha de trabajo para establecer los criterios de clasificación de las reacciones químicas, por su mecanismo de combinación.

- Previa investigación bibliográfica sobre los criterios establecidos para clasificar las reacciones químicas, compararlos con su propia clasificación
- Práctica de laboratorio: "Tipos de reacción química: síntesis, sustitución y eliminación".
- 2.3 Investigación bibliográfica del alumno, de las reacciones simples que ocurren en fenómenos cotidianos, ejemplo: combustión del gas doméstico, fabricación de plásticos, medicamentos, papel, pinturas, procesado de alimentos, curtido de pieles, fotografía, etc.

 Ejercicio para identificar en los
- procesos investigados, aquellos en los que se obtengan resultados diferentes al modificar las condiciones del proceso, por ejemplo: uso del calor, la refrigeración, el

		tipo de combustible, un catalizador, la acción de la luz, la presión atmosférica Explicar los principios químicos que permiten utilizar las formas de conservación de los alimentos: congelación, refrigeración, deshidratación, acidificación, conservadores. — Formas de cocimiento de los alimentos: baño María, olla de presión, vapor, horneado, fuego lento, fuego directo, con limón o vinagre, con bicarbonato de sodio para evitar la decoloración de verduras y sabores desagradables. — Ficha de estudio. Lecturas para analizar algunos procesos biológicos que requieren catalizadores bioquímicos, la influencia de la luz, temperatura, grado de acidez (pH), etc. Práctica de laboratorio: "Formación de óxidos e identificación de sus propiedades". — Ficha de trabajo. A partir de datos de energía de ionización y
2. Nomenclatura inorgánica	2.1. Metales, no metales 2.2. Estados de oxidación. 2.3. Funciones químicas inorgánicas: óxidos, hidróxidos, ácidos y sales 2.4. Nomenclatura moderna 2.5. Carga de los iones	electronegatividad, determinar el tipo de enlace predominante de los óxidos básicos y ácidos. — Previa investigación bibliográfica de las reglas de nomenclatura, por el alumno, realizar ejercicios para identificar fórmulas y nombres de óxidos ácidos y básicos. — Ficha de trabajo, a partir de datos de propiedades físicas de óxidos, separarlos en básicos y ácidos. — Ficha de estudio. Lectura sobre aplicaciones de óxidos como: CaO; MgO; NO2; SO2; CO; CO2 Previa investigación bibliográfica de las reglas de nomenclatura por el alumno, realizar ejercicios para identificar fórmulas y nombres de hidruros e hidrácidos.
3. Estequiometria	3.1 Unidades de medición en los cálculos químicos. — Masa, volumen, unidad de masa atómica, Mol, volumen molar, molaridad y ppm. 3.2 Relaciones Cuantitativas — Composición porcentual. — Fórmula mínima y fórmula real. — Relaciones de masa en reacciones — Reactivo limitante.	-establezca patrones de medida propios para medir: masa, longitud, volumen, densidad y presión, y concluya de la necesidad de unidades — Ejercicio donde el alumno contraste sus unidades con las del Sistema Internacional y realice cálculos de conversión de unidades utilizando el análisis dimensional. — Previa investigación bibliográfica, definir la masa atómica, masa molecular y las unidades que se utilizan para

		atómicas y de la masa molecular del compuesto. — Ficha de trabajo, para identificar la fórmula mínima y molecular de un compuesto, conociendo la composición y masa atómica de sus elementos y la masa molecular. — Ejercicio. A partir de una reacción química, igualarla y determinar la relación de masa de reactivo a reactivo, reactivo a producto y producto a producto. — Reporte de lectura: Lectura referida al reactivo limitante y en exceso en una reacción química. — Ejercicio. De una serie de reacciones propuestas, el alumno identificará el reactivo limitante en exceso partiendo de masas arbitrarias. — Previa exposición del profesor, el alumno expresará la concentración de diversas soluciones en unidades como: % 3 de soluto, ppm, g/L, g/cm, mol/L (molaridad). — Investigación bibliográfica para identificar la concentración promedio de
		sales en el agua de mar y en los sueros fisiológicos, de contaminantes del aire y las unidades en que se reportan. — Contando con información previa sobre los fluidos corporales, el alumno expresará las concentraciones en % masa y ppm. — Ejercicios para determinar la concentración de soluciones en una serie de problemas planteados. Reporte de estudio. Lectura sobre el efecto invernadero y su impacto en la regulación del clima. 3.3 Explicación del profesor sobre el concepto volumen molar de un gas. — Ficha de trabajo para comprobar que las relaciones volumétricas de los gases que participan en una reacción química, bajo las mismas condiciones de presión y temperatura, permanece constante. — Ejercicios para determinar la masa de un gas reaccionante o producido, a partir de las relaciones volumétricas de la reacción y del volumen molar gaseoso Investigar Concepto. Solvente y soluto. Tipos. Formas de expresar la
4. Soluciones	4.1. Propiedades generales de las disoluciones	

	4.2. Concentración de disoluciones 4.2.1. Composición porcentual 4.2.2. Molaridad 4.2.3. Normalidad 4.3. Reacciones de precipitación 4.3.1. Solubilidad 4.3.2. Ecuaciones moleculares 4.3.3. Ecuaciones iónicas 4.4. Reacciones ácido-base 4.4.1. Propiedades generales de los ácidos y bases 4.4.2. Neutralización ácido-base	concentración: Concentración porcentual, Concentración molar y normal. Soluciones coloidales: tipos, características. Resolución de problemas relacionados a Soluciones. Ecuación química. Balanceo de ecuaciones. Significados cuali y cuantitativo. Relaciones estequiométricas simples. Exceso y defecto. Pureza de reactivos. Rendimiento de reacciones. Equivalentes ácido-base. Soluciones: definición y características. Unidades de concentración. Dilución de soluciones. Mezcla de soluciones con igual soluto. Ecuaciones iónicas. Estequiometría de soluciones Análisis de una presentación o lectura que describa la forma cómo Mendeleyev descubrió y fundamentó su propuesta de Ley periódica. — Ficha de trabajo. A partir de los datos
5. Enlace químico	5.1. Enlace químico: iónico, covalente y metálico 5.2. Propiedades de los compuestos iónicos covalentes y	de propiedades de elementos seleccionados, el alumno reconozca grupos o familias. — Actividad de laboratorio para identificar que algunos elementos tienen propiedades semejantes.
	metálicos 5.3. Regla de octeto y sus excepciones 5.4. Estructuras de Lewis	Exposición del profesor, para describir la necesidad de un marco teórico que explique el comportamiento periódico de los elementos Ejercicios o ficha de trabajo, para determinar el número de partículas
	5.5. Carga formal y número de oxidación	subatómicas, a partir del número atómico y el número de masa de átomos, iones e isótopos. — Ejercicios para calcular la masa atómica promedio de un elemento, a partir
	5.6. Polaridad de las moléculas 5.7. Resonancia	de la abundancia relativa y la masa de sus isótopos. — Audiovisual o lectura sobre los modelos atómicos cuánticos: Bohr,
	5.8. Oxidación y reducción 5.9 Ley periódica de los elementos (Mendeleyev). — Antecedentes y sistema de Mendeleyev. — Clasificación operativa de los elementos en metales, no metales y gases nobles. — Ley periódica en relación con la evolución de la teoría atómica. 5.10 Estructura atómica de los elementos químicos. — Componentes atómicos: partículas subatómicas. — Representación atómica: número atómico, número de masa, isótopos y masa atómica promedio. — Teoría atómica cuántica: Principios físicos; dualidad de la materia, incertidumbre. Niveles, subniveles, orbitales y	Sommerfeld, Schrödinger y Dirac, para describir sus características y los principios físicos involucrados. — Ficha de trabajo para relacionar los principios físicos con los conceptos de nivel, subnivel y orbital, así como su relación con los números cuánticos. — Ejercicio para determinar el número máximo de electrones que se pueden distribuir en cada nivel y subnivel de energía, y representar simbólicamente los

spin (concepto y números cuánticos).

Principios de ordenamiento electrónico (exclusión, máxima multiplicidad, Aufbau). Configuración electrónica por orbitales.

- 5.11 Propiedades periódicas de los elementos.
- Configuración electrónica y sistema periódico:
 Estructura atómica en relación con

los grupos y periodos de los elementos. Clasificación de los elementos

Clasificación de los elementos (representativos, transición). Características comunes de los elementos del mismo grupo.

- Energía de ionización.
- Electronegatividad.
- Número de oxidación.
- Tamaño atómico.
- 5.12 Estabilidad electrónica.
- Teoría del octeto (Kossel).
- Fórmulas de Lewis: representación simbólica de elementos.
- Representación simbólica de moléculas y de iones.
 5.13 Enlace iónico.
- Modelo y concepto.
- Carácter iónico. Fuerza y energía del enlace.
- Estructuras cristalinas.

Geometría de los cristales iónicos.

- Propiedades de sustancias iónicas: eléctricas, solubilidad, punto de fusión, reactividad.
- 5.14 Enlace covalente.
- Modelo y concepto. Teoría del enlace de valencia.
- Carácter covalente. Fuerza y energía del enlace.
- Tipos de enlace covalente: no polar, polar y coordinado.
- Propiedades de sustancias covalentes: eléctricas, solubilidad Pf , Pe , reactividad,
- 5.15 Atracciones intermoleculares.
- Dipolo-dipolo.
- Puente de hidrógeno.
- Fuerzas de Van der Waals.
- Efecto en propiedades de

orbitales.

- Previa investigación bibliográfica sobre los principios de ordenamiento electrónico, explicar el principio de Aufbau, el principio de exclusión de Pauli y la regla de Hund.
- Ejercicio para representar la configuración electrónica por niveles, subniveles y orbitales de los elementos químicos.
- 5.3 Exposición del profesor para integrar los conceptos revisados y su relación con la estructura de la tabla periódica.
- Ficha de trabajo. Ubicación de los elementos en la tabla periódica con base en la configuración electrónica de sus átomos y su clasificación en elementos representativos y de transición.
- Ficha de trabajo para identificar la relación entre la variación periódica de la energía de ionización y la electronegatividad con la configuración electrónica.
- Ejercicio para relacionar la configuración electrónica, los estados de oxidación posibles de los elementos y la estabilidad electrónica de un gas noble.
- Ficha de trabajo para determinar gráficamente la variación periódica del tamaño atómico. Práctica de laboratorio o ficha de trabajo, para comparar propiedades físicas entre compuestos iónicos y los que no lo son.
- Exposición del profesor para describir las teorías del enlace covalente.
- Ficha de estudio sobre la teoría del enlace valencia y la formación de orbitales moleculares.
- Fichas de trabajo. Utilizar la anotación de Lewis y la teoría del enlace valencia en moléculas.
- Ficha de trabajo para determinar el carácter iónico de los enlaces y fundamentar las diferencias entre enlace covalente: no polar, polar y coordinado.
- Ficha de estudio. Lectura que describa la aplicación de sustancias covalentes en la vida diaria.

	solubilidad, densidad y Pe, por estas interacciones.	
6.	6. 1 pH , Ácidos y bases	Investigar; Concepto de pH y pOH. Ácidos y bases de: Arrhenius. Bronsted y Lowry. Lewis. Realizar problemas de cálculos de pH y pOH de ácidos y bases fuertes.

VIII. Metodología y estrategias didácticas		
Metodología Institucional:		
a) Elaboración do encayos, monografías o investigaciones (cogún el nivel) Consultando fuentes		
 a) Elaboración de ensayos, monografías e investigaciones (según el nivel). Consultando fuentes bibliográficas, hemerográficas y "online". 		
Estrategias del Modelo UACJ Visión 2020 recomendadas para el curso:		
a) aproximación empírica a la realidad		
b) búsqueda, organización y recuperación de información		
c) comunicación horizontal		
d) descubrimiento		
e) ejecución-ejercitación		
f) <u>elección, decisión</u>		
g) evaluación		
h) experimentación		
i) extrapolación y trasferencia		
j) internalización		
k) investigación		
I) meta cognitivas		
m) planeación, previsión y anticipación		
n) problematización		
o) proceso de pensamiento lógico y crítico		
p) procesos de pensamiento creativo divergente y lateral		
q) procesamiento, apropiación-construcción		
r) significación generalización		
s) trabajo colaborativo		

IX. Criterios de evaluación y acreditación

a) Institucionales de acreditación:

Asistencia a clases del 80%

Entrega oportuna de trabajos

Pago de derechos

Calificación mínima de 7

b) Evaluación del curso:

Teoría 70%

Laboratorio 30%

X. Bibliografía

a) Disponible en Biblioteca

- Allinger, N. L., M. P. Cava, D. C. De Jongh, C. R. Johnson, N. A. Lebel y C. L. Stevens. 1984. Química Orgánica. Reverté. España. 1453.
- Brown, T. L., H. E. LeMay y B. E. Bursten. 2009. Química. La ciencia central. Séptima edición. Pearson Educación. México. 1117 p.
- McMurry, J. E., R. C. Fay, J. Enríquez y V. Gonzalez. Química General. 2009. Pearson Educación. México. 1014 p.
- Morcillo, J. 1966. Temas Básicos de Química. Alhambra longman, España. 697 p.
- Mutio R. A. M., C. López S., L. M. Venegas B. y R. Sega. 2010. Aprendiendo Química gota por gota. Cengage. México D. F. 200 p.
- Skoog, D. A., F. J. Holler, T. A. Nieman y M. d. C. Martin-Gómez. 2001. Principios de análisis instrumental. McGraw-Hill Interamericana, Madrid España. 1028 p.
- Whitten, K. W., R. E. Davis y M. L. Peck. 2000. General Chemestry. Forth Worth: Sanders College Pub. U.S.A.

X. Perfil deseable del docente

- a) Grado académico: Licenciatura mínimo y tomar cursos de docencia.(químico)
- b) Área: Relacionada con la materia
- c) Experiencia: En el ejercicio del proceso de la química

XI. Institucionalización

Responsable del Departamento: Dr. Ph. Antonio De la Mora Covarrubias

Coordinador/a del Programa: : Dra. Katya Aimeé Carrasco Urrutia

Fecha de elaboración: ENERO 2014

Elaboró: Dra. Katya Aimeé Carrasco Urrutia

Fecha de rediseño: octubre del 2016.

Rediseño: Dra. Katya Aimeé Carrasco Urrutia